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Raman optical activity (ROA) is a spectroscopic tech-
nique'~ which can provide information about chiral mole-
cules. Various sum rules for the ROA intensities have been
derived by Cuony and Hug,* and by Polavarapu.>® The
purpose of this communication is to show that the relation-
ships involved in these sum rules can be conveniently ex-
pressed in terms of a matrix formalism for ROA presented
by Rupprecht in Ref. 7. Since this reference is not easily
accessible, not occurring in a regular journal, a short sum-
mary of the basic approach will be given (Ref. 7 is available
from the author on request).

In this matrix formalism the anisotropic parts of the
electric and magnetic dipole polarizability tensors @ and 8,
respectively, and of the tensor, d, related to the electric
quadrupole polarizability tensor A through 6; = Zg Ay,
are expressed as 6x1 column vectors. The order of the
components has been chosen as in the Mayants-Averbukh
Raman intensity theory,® and these column vectors are
denoted with an overbar [eqns. (1a,b) and (1c)].
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The mean values a = (1/3)Tra and b = (1/3)Tif in eqns.
(1a,b) are treated separately as scalars (9 is traceless since
A is symmetric in the last two indices).

The derivatives of these quantities with respect to the tth
normal vibrational coordinate Q, (evaluated for the equili-
brium configuration of the molecule) occur in the tensor
invariants®’ y?, B2, 82, a,and b, as illustrated for 87 in Ref. 9
(see Ref. 7 for the other invariants). These derivatives may
be evaluated in terms of derivatives with respect to the
Cartesian atomic displacement vectors X@ j.e. in terms of
atomic polar tensors (APT’s) (3@,,;,,/9X®) and atomic ax-
ial tensors (AAT’s) (3f,.,/9X®) and (38,,,,/0X®) as il-
lustrated in eqns. (7) and (8) of Ref. 9.

As an illustration of the application of this formalism, let
us consider the frequency-weighted sum rule recently pre-
sented by Polavarapu.® This relates the ROA intensities of
fundamental transitions of isotopic molecules and is useful
for determining force constants. In the present matrix for-
malism, eqn. (1) of Ref. 6 can be written as
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where v, is the frequency (in cm™") of vibration 7, R; is the
jth internal coordinate and F; ! an element of the inverse
force constant matrix in internal coordinates. K = diag
(1,2,2,1,2,1), and ~ signifies the transpose.

As an additional example, the anisotropic parts provided
by eqn. (4) of Ref. 6 can be written as
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where § = (T, T,T,R.R,R,) represents the six normal ro-
translational coordinates (see also Ref. 10). The indices a,
1 and 2 refer to atom a and to two isotopic molecules. Thus,
B, and A, are submatrices pertaining to atom a of f and A,
respectively (not to be confused with the magnetic dipole
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and electric quadrupole polarizability tensors), defined in
Ref. 6 (see also Ref. 10). The last symbol in eqn. (3)
signifies the jth column of A,. The analogous equation for
the mean value b is obtained by replacing B,,;, with b.

The great usefulness of this matrix formalism in the
present context is, however, to be found in the uniform
evaluation of the derivatives with respect to the normal
rotranslational coordinates @ in terms of matrices. Refer-
ring to Ref. 7 the result is:
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where m is the mass of the molecule and I the moment of
inertia tensor. 0,,, is a kX/ zero matrix, and [[e,,;]] is the
following 6x3 matrix:
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where aﬂ,a = aﬁ,aniso [eqn' (la)]

This quantity concerns the equilibrium configuration of the
molecule. [[B,.;.]] and [[d,,,]] are completely analogous,
L.e. Oanso in eqn. (5) is replaced by By .m0 and O uico,
respectively, from eqns. (1b) and (1¢). It has been shown'!
that [[a,;.]] represents @, expressed as a third-rank axial
tensor which is symmetric in the first two indices. However,
[[Banico]] and [[,,,]] are polar tensors.’

If the matrix products (3f,,,/3@)B, [occurring in eqn.
(3)] and (39,,,,/3@)B, are evaluated in the principal axis
coordinate system, using the expressions above and the
explicit form of the 6x3 matrix B, displayed e.g. in Table 2
of Ref. 12, then the result is found to be equivalent to the
expressions given by Polavarapu in Table 1 of Ref. 6 (a
misprint occurs in the third column of that table: the sign of
YaA,./I, should be +). However, it should be pointed out
that the a vector of Ref. 6 represents a tensor with non-zero
trace, while the corresponding vector of the present work
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8,50, €qn. (1c), represents the traceless tensor. As a result
the a vector requires knowledge of more diagonal tensor
components than are actually needed, and this uneconomi-
cal property is also transferred to the derivatives of a with
respect to @ occurring in Table 1 of Ref. 6.

In our view, the present matrix formalism is not only
more economical but also more uniform and transparent
than the partial matrix formalism introduced by Polav-
arapu® in terms of the column vectors a and b. The reason
for this is that the column vectors in eqn. (1) are all defined
in the same way as the anisotropic parts of the molecular
tensors, providing a minimal set of components, and that
they are introduced from the beginning and are used
throughout. As a result the derivatives in eqn. (4) will all be
expressed in terms of the matrices [[ ]] defined in eqn. (5).
This uniformity should make the formalism suitable for
computer calculations.

The other intensity sum rules in ROA*® can also be
expressed conveniently with this matrix formalism, as il-
lustrated in Ref. 7. Among other things it was shown’ that
the APT’s and AAT’s can be divided into atomic vibration,
rotation and translation tensors which add up to the vibra-
tional, rotational and translational contributions, respec-
tively, in the sum rule equations. The great usefulness of
symmetry invariant APT’s and AAT’s, referred to their
respective atomic coordinate systems, is also demonstrated
in Ref. 7 in connection with sum rules, by analogy with the
treatment in Ref. 13. This illustrates further the usefulness
of this matrix formalism for theoretical developments in
ROA.
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